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TECHNICAL NOTE 2551

EFFECT OF VARIOUS PARAMETERS INCLUDING MACH NUMBER
ON THE SINGLE-DEGREE-OF-FREEDOM FLUTTER OF A
CONTROL SURFACE IN POTENTIAL FIOW

By Harry L. Rumyan
SUMMARY

Various investigations of single-degree-of-freedom pitching oscil-
lations of a wing in potemtial flow have been made. However, corre-
' sponding studies of single-degree-of-freedom flutter of a control
' surface have not been made. The present paper demonstrates by theo-
} retical calculations that single-degree-of-freedom control-surface
‘ fiutter 1s possible. The effects of structural damping, aerodynamic
balance, axis of rotation, and compressibility are included.

L The mechanism of instabillty presented here is based on potential-
flow theory and the results of such a study are not directly applicable
to separated flow; in addition, certain practical limitations are
discussed.

INTRODUCTION

Flutter of a control surface alone, that is, an unstable oscilla-
tion in which the control surface is effectively rigid and nondeformable
and rotates around its hinge line, has been encountered on aircraft in
flight. This phenomenon, as well as stall flutter, is thought to be
agsociated with separated or nonpotential flow, although the explanation
is not entirely clear. Flutter of a control surface in one degree of
freedom is possible in potential flow, at least theoretically, and forms
the subject of the present paper. The development of this subject may
possibly contribute to the understanding of the nonpotential-flow
problem.

Theoretical investigations of several types of undamped single-
degree-of-freedom oscillations in potential flow have been reported
recently. For instance, Smilg (reference 1) has reported a study of
the undamped oscillations of a pitching wing in incompressible flow and
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this study has been extended by Runyan in reference 2 to include the
effect of compressibility. Cunningham (reference 3) has studied the
undamped bending oscillations of a swept wing in subsonic flow. The
undamped pitching oscillations of a wing in supersonic flow have been
studied by a number of investigators, for instance, Garrick and Rubinow
(reference L), Temple and Jahn (reference 5), and Watkins (reference 6).

The aforementioned papers concern single-degree-of-freedom pitching
of a wing or the bending of a swept wing. Some examples of control-
surface flutter in one degree of freedom are given in reference T along
with a discussion of some possible causes. Apparently no calculation
studies exist demonstrating the conditions for the existence of single-
degree~-of-freedom oscillations of a comtrol surface. Accordingly, the
purposes of this ‘paper are (1) to show the conditions for the existence
of single-degree-of-freedom oscillations of a control surface based on
potential-flow theory and (2) to examine and present the effect of various
parameters such as Mach mmber, fluld demsity (or altitude), location of
axis of rotation, structural damping, and aerodynamic balance on this type
of oscillatory instability.

Certain limitations which may affect practical consideration of the
results presented in this paper should be noted: (1) the calculations
are based on two-dimensional aerodynamic coefficients, and the effect
of aspect ratio, which could be appreciable, is not taken into account,
(2) the influence of additional degrees of freedom, which will always
be present in actual configurations, is not considered, and (3) the
effect of finite thickness and shape of the comtrol surface is not
considered, since the control surface has been replaced in theory by
its mean camber line. In addition to these limitations, the results
of this study are not directly applicable to separated flow, since the
analysis was based on potential-flow theory. Nevertheless, this approach
should provide a basis for comparison and study and a gulde for further
investigation.

SYMBOLS

b wing half-chord, feet

c location of hinge axis of control surface without aerodynamic
balance with respect to midchord point, based on half-chord
and positive rearward

c'! location of léading edge of control surface with aerodynamic
balance with respect to midchord point, based on half-chord
and positive rearward
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CRR

F and G
€p
Top
Tpg

Ig

toréional stiffness of control surface about hinge line ¢

function of ratio of aileron chord to wing chord

location of hinge axis of control surface with aerodynamic
balance with respect to midchord point, based on half-chord
and positive rearward

transcendental functions of k for oscillating plane flow

structural damping coefficient (ﬂgB:x Logerithmic decrement)

out-of-phase aerodynaemic moment coefficient

total out-of-phase moment coefficient

mass moment of inertia of control surface about hinge line
per unit length

Kgg and KﬁR aerodynamic moment coefficients for a conmtrol surface in

" compressible flow
reduced-frequency parameter (bw/v)

nondimensional. distance from control-surface axis of rotation
to leading edge of control surface (e - c')

Mach number

total complex aerodynamic moment on control surface

-

aerodynemic coefficients for a combtrol surface In supersonic
flow

" total inphase moment coefficient

part of inphase aerodynamic moment on control surface ‘

control-surface coefficients defined in references 8 and 9
flutter velocity, feet per second

control-surface rotation, measured .from wing chord line

e e et = e e e ot < . = e e T2 i 7 e At e S —————
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p fluid density, slugs per cublc foot
w flutter frequency, radians per second
wB natural frequency of control surface about hinge axis, radlans

per second
ANATYSTS

In this sectlion, the expression for the equilibrium of moments on
a control surface oscillating sbout its hinge line is given, followed
by a discussion of the aerodynamic moment for (1) a control surface
oecillating in Incompressible flow, (2) a comtrol surface, having aero-
dynamic balance, oscillating in incompressible flow, and (3) a conmtrol
surface oscillating in compressible flow.

The equation representing the equilibrium of moments per unit
length on a control surface oscillating sbout the hinge line c¢ 1s

Igf + (1 + 1gp)CyP = My | (1)

where Iﬁ is the mass moment of inertia per unit length of the control
surface gbout its hinge line ¢, P 1s the angular deflection of the
control surface measured from the chord line, g is a structural
damping coefficient, and CB is the torsional stiffness of the control
system about c¢. The quantity Mﬂ is a complex aerodynamic momegt,
which is a function, in part, of the displacement £, velocity B,
acceleration ﬁ, reduced-frequency parameter Xk, Mach number M, and
locatlon of hinge axls c¢. The complex notation has been in use in
flutter work for many years because of its convenlence, since it contalns
both the magnitude of the forces or moments and the phase with respect
to the displacement. The expression for the aerodynamic moment Mp

is given in reference 8 for a control surface which is hinged at its
leading edge and oscillating in incompressible two-dimensional flow.

An expression for the aerodynamic moment MB for an serodynamically
balanced control surface is glven in reference G. 'Closed expressions
for MB for compressible fluid do not exdist and values of the aero-
dynamic moment Mﬁ must be obtained by use of tables as given, for
example, in references 10 and 11 for subsonic flow M< 1) and in
reference 12 for supersonic flow (M > 1).
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Since equation (1) is complex, it can be separated imto two com-'
ponents as follows:

ﬁbB + ﬁbB =0 (2)

‘where ﬁbﬁ represents the inphase (real) moment coefficilent and be
represents the out-of-phase moment coefficient for the control surface.
Equation (2) implies that both components, Ipg and Rpg, must vanish

simultaneously for equilibrium.

The vanishing of the out-of-phase moment E%ﬁ corresponds to a
borderline condition between damped and undamped oscillations as was
more fully discussed in reference 2. The flutter frequency may then
be determined from the inphase (real) moment equation. This inphase
moment equation RbB = 0 may be put in more convenient form as follows:

,2 _
(2 = L (3)
1 . :rp'bl+
- RbB —~

B
where RbB' is proportional to the inphase aerodynamic moment on the

control surface. In the subsequent sections, expressions for Tbﬂ
and Rpg' will be given for the various cases.

Equations for Incompressible Flow

Control surface wlthout aerodynasmic balance.- The expression for
the aerodynsmic moment on a harmonicaelly oscillating comtrol surface

in Incompressible flow bhaving no aerodynamic balance may be derived from
reference 8 as

Mg = —pb2|;;:t- VZ(Ts - Tl,_Tl())B - ‘é]:f vbpTyT17 - %T_gbzé] -

pva‘I'lg(F + iG)(% Tio"R + Eb;t- T]_’Lé) 7 (%)
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where the T coefficients are functions only of the hinge position c
and are defined in reference 9. Substitution of equation (k&) into
equation (1) and separation into the two components lead to equation (2)
where

)
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0
o

P
<

= _1{T12(Tio2¢ . ™11 1 Ig (‘Dﬁ)e
Ibs=E§r(Tf+§?2F) -Q?TuTli\’ M Rerivry
=0 (6)

The inphase (real) moment .ﬁbB may be expressed in the form given by
equation (3) where

: T
T 3 1
Bg' ="z \zr © 7 _ke) * 2 * k"znz‘(TS - TAT@ (7)

A mumerical or a graphical method is necessary for the solution of
the out-of-phase moment Ipg = O since the functions F and G are
transcendentel functions of 1/k. Once the combination of 1/k and
F and G +that satisfies equation (6) has been determined, the frequency
and flutter speed can be obtained from equation (3) in which the value
of Rpp' is taken for the same value of 1/k that satisfied equation (6).

Control surface with aerodynamic balance.- The force and moment
on a harmonically oscillating control surface having aerodynamic
balance have been derived in reference 9 for incompressible flow. A
control surface having aerodynamic balance is represented in refer-
ence 9 as follows:

| p— Sy,
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where the dimensions c, c¢', e, and 1 are referred to the half-
chord b.

The out-of-phase (imaginary) moment coefficient may be derived
from reference 9 as

Top

1 1 1 2g
{;5 <T19 + Uy + 22T29> + 51—((51312 - 2ZT20)[;(T10 - ZT21>Y +

1
E(Tll -21T, QF]}

=0 (8)

and the frequency is determined from the inphase (real) moment expressed
as equation (3) where

T

Ryg' = - _15(_.‘T3 + 21T, - 12T5> 2,@(1118 + ZT26 + 22Tes)

1 1 26 1 oF
z—n(TlQ - 2ZT20) [EE(Tll - 22'.1'10)1- - E('1310 - ZT21>-£§:' (9)

The T coefficlents are given in the appendix of reference 9 and
all T's are functions of c¢. One exception that needs separate con-
sideration 1is the term T28 which is discussed 1n reference 9. For the

case (over idealized) of a sharp vertical step, the term T28 becomes

infinite; however, for practical configurations certain approximations
can be made which permit a finite-value determination of this term.
One such simple approximation is given in reference (9) as

ct = %{e + 3c)

Equations for Compressible Flow

Closed expressions for aerodynamic moment and 1ift on oscillating
wilngs and control surfaces in compressible flow do not exist. Aero-
dynamic moment and 1ift coefficients have been calculated by several
investigators for various ranges of Mach number and reduced frequency
and are usually presented in the form of tables. In reference 10,
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tables of aerodynamic coefficlents gre presented for one aileron-to-
wing-chord ratio of 15 percent (¢ = 0.7) for M = 0.7. These tables
are extended in reference 11 to include several aileron-to-wing-chord
ratios of 2k, 33, and 42 percemt. .

A notaetion differing from that used in this paper is used in
references 10 and 11 where the inphase (real) moment coefficient of
a control surface is denoted by KﬁR and the damping (out-of-phase)

moment is denoted by K%R' The relation between the coefficlents of
this paper and those of references 10 and 11 is given as

KII
. _ "RR .
Kl
. _ _RR
Rpp' = w2 " °mR

where Cgr 18 2 function of the rastio of the aileron chord to the wing
chord and is given in reference 11, page 16.

In order to obtain a solution, it is necessary to plot KﬁR against
k and determine the value of k at which Kpp = O. The frequency is
then given for the same value of 1/k by

—— -

o \2 1
D\ - (11)
<&B) 1 - Kﬁﬂ ﬁdbh

2 RR Ig .

The results of calculations of aerodynamic coefficients for a
control surface oscillating in supersonic flow have been reported in
reference 12. The aerodynamic moment on the control ‘surface is given
as

Mg = -hébavekéﬁ(b% + 1N6) | (12)

where N5 is the ﬁnphase moment coefficient and N6 is the out-of-

phase moment coefficient. In order to obtain a solution for the out-
of-phase moment, Ng = 0, the value of 1/k at which Ng = O must be
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determined. The frequency is then given for the same value of l/k
by

WO\ L (23)
) L

DISCUSSION OF RESULTS

In this section, the results of calculations based on the expres-
slons previously presented are given. The oscillation of a control
surface in incompressible flow with zero structurel damping is discussed
and the effect of structural damping is Introduced. A discussion of
the effect of aerodynamic balance and the effect of compressibllity
follows.

Flutter of control surface with zero structural damping in incom-

pressible flow.- Calculations based on equations (5) and (6) where

ga = 0 have been made for various locations of the control-surface
axis of rotation. The results of the computations are presented in
figures 1 and 2 for ratios of the control-surface chord to wing chord
of 10 per;ent, 30 percent, 50 percent, and 100 percent (c = 0.8, 0.k,
0, and -1). :

In figure 1 the flutter-speed parameter v/baB is plotted against

an inertia parameter IB/npbh. The curves represent the transition,

for a given Mach number, from a damped or stable condition to an undamped
or unstable condition. The steble region is below or to the left. of

a curve, and the unstable region is above or to the right of a curve.

For small values of the inertia parameter the control surface would be
stable and, 1f the inertia parameter i1s increased, for instance by an
increase 1n altitude, a value equal to the vertical asymptote could be

reached or exceeded. In figure 1(a) (c = 0.8) this value is —x = 7.58
o

which increases to 577.7 (fig. 1(d)) for c¢ = -1.0, that is, for a

wing oscillating about its leading edge. The flutter speed for values

of IB/npbh equal to the asymptote is infinite, but a slight increase
in IB/np‘blL would result in a very rapid decrease in the flutter speed.
For values of I ﬂpbh approaching infinity, v, approaches.

B

a value equal to v/bw at which the oscillation occurs. It should be
noted that the oscillation occurs at a constant value of v/bw, which

e m o mme ta o e e T e S i e Y Tttt S o e ———— e = — =
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means that, no matter what the value of the inertia parameter, the wave
length of the oscillating wake will be the same in the border condition.

The frequency ratio (ayh5)2 is plotted against the inertis param-
eter IB/:tp'blL in figure 2 for the same axis-of-rotation locations as
for figure 1. The unstable region is above or to the right of a curve.
The vertical asymptotes are the same as for figure 1, but the horizontal
asymptote is unity. This fact indicates that, for very large values of

IB/npbh, the fregquency of oscillation approaches the natural (still air)
frequency of the control surface.

In figure 3, the value of the reduced velocity 1/k is plotted
against the location of the axis of rotation of the control surface.
Note that' the vaeriation of 1/k with c¢ 1s not very large
(25 <.l/k < 35), but the values are considerably higher than experienced
in flutter and approach values found in stability work.

Tn figure 4, the minimum velue of the inertia parameter (verticel
asymptote) at which the oscillation could occur is plotted against
location of comtrol-surface axis of rotation. The value of the inertia
parameter increases as the aileron-to-wing-chord ratio increases. This
plot is of particular significance with regard to the zero structural
restraint case (wB = 0). If equation (3) is inverted to obtain

wB 2 ' :tp‘blL
(TD- =1 - RbB IB

and ag = O, there is obtained the relation

. _ 1B (1)
RbB - ﬁpbi

which indicates that, if IB/npbh is equal to RbB': an oscillation
is possible. The frequency of oscillation is then a direct function of
the velocity, and flutter can theoretically occur above zero airspeed
as shown by the relation .

_ bw
M3
where 1/k is the value that satisfied IbB = 0. If the value of RbB'
is exceeded by IB/ﬂpbh, the control surface is belng operated past

the transition polnt and in the unstable region.
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Flutter of control surface with structural damping in incompressible

flow.- As 1s often done, the type of damping force assumed is one that

is inphase with the velocity 8 but proportional to the angular dis-
placement 8.

The results of computations for one location of the axis of rota-~
tion c = 0.7 are presented in figures 5 and 6. In figure 5, the
flutﬁer—speed parameter v/wa is plotted against the inertia parameter.
As noted, there 18 a very large effect of the damping

parameter and it
may be that structural damping could be used for eliminating this type
of oscillation. In figure 6, the frequency ratio (w/wg)® 1is plotted
against the inertis parameter. It should be nofted that flutter does
not occur (contrary to the case for zero damping) at a constant value
of the reduced speed v/bm ag the inertia parameter is varied. The

values of v/bw and IB/rtpbh for several values of the structural
damping coefficlent for ¢ = 0.7 are as follows:

1/k for -
* “I—BE=2° Iﬂu=3° ¥Bu=5° IBu=75- IBLfloo
7Pb npb pb npb npb
0 3k.25 34.25 34.25 34.25 3k.25
.01 38.0 Y 56.1 67.58 T7.60
.02 38.80 46.36 58.8 7L1.50 82.35

Flutter of a control surface having aerodynamic balance and zero
structural damping.- Calculations have been performed for two control
surfaces by use of equations (8) and (9) for two locations of axis of
rotation e ©but one value of ¢, and the results are plotted in
figures T and 8, 1In figure 7 the flutter-speed coefficient is plotted
against Ig/mpb* for c = 0.4 and e =0.55 and e =0.75. The
curves are similar to those obtained without aerodynamic balance, except
that the limiting value (vertical asymptote) appears to be at a larger

value of the sbscissa. In figure 8 the frequency ratio (a)/an)2 is
plotted against the inertia parameter IB/np'blF for the same cases.

The important facts to'be noted are (1) that aerodynamic balance
did not eliminate single-degree-of-freedom instability of a control
surface and (2) that the greater the amount of aerodynamic balance, the
higher the limiting value of the inertia parameter at which the oscilla-
tion could begin for this particular case.
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Flutter of comtrol surface in compressible flow.- The results of
the calculations based on the equations and tables discussed earlier
are presented in figures 9, 10, and 11l. In figure 9 the flutter-speed
parameter is plotted against the inertia parameter for M = 0, 0.7,
and 10/9. The curves for M = 0.7 and M = J§Q are similar in form

to the curve for M = 0, except that the stable range of the inertia
parameter is greatly reduced as the Mach number is increased. Another
effect of increasing Mach number is to reduce the value of the reduced-
velocity coefficient l/k, and this reduction is believed to be signifi-
cant. In flgure 10 the frequency ratio is plotted against the inertia
parameter for three Mach numbers M = 0, 0.7, and 10/9.

A significant plot is made when the asymptotic value of the inertia
parameter is plotted against Mach number as shown in figure 11. The
relation between the ilnertia pasrameter and Mach number appears to be
linear, and the region to the right and above the curve is the unstable
range. This plot, as discussed earlier, is of particular significance
with regard to the control surface without elastic restraint (wg = 0)
and shows that an aileron that is stable in the low Mach number range
could become unsteble in the high subsonic or lower supersonic range.

The asymptotic value of the Ilnertia parameter at M = 0.7 for
several posltions of the control-surface hinge axis is included in
figure 4. The effect of Mach number is again apparent in that increasing
Mach number considerably reduced the value of the inertia parameter for a
given hinge position at which oscillation could occur.

VARIOUS PRACTICAT. LIMITATIONS TO THEORY

In general, theoretical comtrol-surface derivatives (either steady
or unsteady) have not always been in good agreement with experiment.
Thig difference is even more pronounced at the higher aircraft flight
speeds and 1s partially due to breakdown and separation of the flow
over the rear part of the wing. Since the aerodynamic coefficients
have been derived on the basis of nonviscous, linearized, potential flow
for simplified models, and the actual flow is viscous, nonlinear, and
nonpotential, the differences between theory and experiment are not
unexpected. However, studies of control-surface characteristics based
on potential-flow theory should provide a basis for the study of the
separated-flow phenomena and provide for a logical grouping of the vari-
gbles to be experimentally investigated.

The present calculations have been based on two-dimensional aero-~

dynamic coefficients and hence do not teke into account the effect of
aspect ratio. Aspect ratio could have an apprecilable effect on this
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type of oscillation since, for the most part, the oscillations are of
a low frequency and approach the range of stability frequencies. How-
ever, reference 6 shows that the effect of finite aspect ratio for a
pitching wing in supersonic flow reduces but does not eliminate the
instability, and a reasonable assumption is that a similar effect may
be found for the subsonic case. .

The influence of additional degrees of freedom was not considered
in the analysis. Actual configurations will normally have more than
one degree of freedom, but an analysis based on a single-degree-of-
freedom system may be an easily obtained 1limit for cases of coupled
flutter. There may, howevér, be circumstances in which only one degree
of freedom is of importance. Cunningham (reference 3) showed in a
recent paper that a slight relaxing of the condition of infinikte stiff-
ness of another degree of freedom did not appreciably influence the
flutter speed.

Another factor which might be of importance is the thickness of
the control surface. The aerodynamic coefficients used here were based
on the concept of replacing the wing and combtrol surface by an infinitely
thin mean camber line. The effect of thickness requires further
investigation.

CONCLUSIONS

Single-degree-of-freedom-flutter calculations which show the effects
of various independent parameters, namely, Mach number, location of hinge
axis, aerodynamic balance, and structurasl damping are presented for a
control surface. The following conclusions may be enumersated:

1. Calculations based on unsteady potential-flow theory indicate
the existence of single-degree-of-freedom flutter of a comtrol surface.

2. Flutter of a control surface alone is more likely to occur for a
configuration operating at high subsonic or low supersonic speeds and at
high altitudes than at. low speeds and low altitudes.

3. Structural damping has a beneficial effect, since it raises the
flutter speed appreclably. The use of structural damping may be a
convenient method of eliminating single-degree-of-freedom flutter.

k. The unstable oscillation is still possibie if the control surface
1s aerodynamically balanced.
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5. These results have several practical limitations. Such effects
as separated flow, aspect ratio, coexlistence of other degrees of freedom,
and finite thickness of control surface were not considered and could be
significant. However, the results should prove useful as a basis for
further experimental study. ’

Langley Aeronsutical Laboratory
Nationel Advisory Committee er Aeronautics

Langley Field, Va., August 17, 1951
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